
Cryptographically Enforced Orthogonal Access Control at Scale
Bob Wall

IronCore Labs, Inc.
Bozeman, Montana

bob.wall@ironcorelabs.com

Patrick Walsh
IronCore Labs, Inc.
Boulder, Colorado

patrick.walsh@ironcorelabs.com

ABSTRACT
We propose a new approach to cryptographically enforced data
access controls that uses public key cryptography to secure large
numbers of documents with arbitrarily large numbers of authorized
users. Our approach uses a proxy re-encryption (PRE) scheme to
handle the problems typical of public key cryptography including
key management, rotation, and revocation, in a highly scalable way,
while providing end-to-end encryption and provable access.

In this paper we describe a system based on this approach. We
call it an orthogonal access control system, because it allows the
decision about the groups to which to encrypt a piece of data to be
made independently and asynchronously from the decision about
who belongs to a group and can therefore decrypt the data. We
define specific requirements for a PRE scheme needed to support
the system, and we provide a specific instance that meets these
requirements. We detail the algorithms that make up the scheme,
and we present an enhancement that provides better revocability
of keys.

CCS CONCEPTS
• Security and privacy → Access control; Key management;
Public key encryption;

KEYWORDS
cryptographic access control, proxy re-encryption, pairing-based
cryptography, key management, orthogonal access control
ACM Reference Format:
Bob Wall and Patrick Walsh. 2018. Cryptographically Enforced Orthogonal
Access Control at Scale. In SCC’18: 6th International Workshop on Security in
Cloud Computing, June 4, 2018, Incheon, Republic of Korea. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3201595.3201602

1 INTRODUCTION
Securing data in transit, at rest, and within applications is difficult,
particularly at cloud scale. As data becomes increasingly distributed
between cloud services, mobile devices, the Internet of Things, and
portable media, managing access to that data wherever it is stored
or used is progressively more difficult. Cryptographic techniques
are commonly used to increase trust in cloud services and to provide

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SCC’18, June 4, 2018, Incheon, Republic of Korea
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5759-3/18/06. . . $15.00
https://doi.org/10.1145/3201595.3201602

more reliable security and access control in a world of distributed
data. In particular, end-to-end encryption is seeing more wide-spread
adoption. However, current end-to-end encryption tools are mostly
restricted to person-to-person communication applications like
messaging and email.

Practical systems that manage access to data by groups of users
typically resort to a model using an access control server that man-
ages symmetric keys and hands them to requesting users based on
policy.While public key-based systems have a better security model,
they suffer from scalability and complexity problems. Consider, for
example, using PGP to secure data. A user can securely encrypt a
file to a set of other users, given their public keys. However, there
is a linear increase in the time and space required to encrypt the
file to each user. When access to an encrypted file must be granted
to a new user, someone with access to the file must decrypt it, then
re-encrypt it to the entire list, plus the new recipient. If files are en-
crypted to teams of people and a person leaves the team, every file
shared with the team must be found, decrypted, and re-encrypted
to the list minus the departing user. The same process must be
followed if a user’s keys are compromised. This solution does not
scale to large groups of users.

We propose a system that is built to embed in applications to pro-
vide cryptographically backed access controls for data. The system
uses public key cryptography, and it overcomes the scalability diffi-
culties using abstract entities that represent groups of users. These
groups facilitate orthogonal access control, because users can choose
the groups to which to encrypt data, while group administrators can
independently add and remove users at any time. These changes
are done in constant time and are independent of the number of
groups, group members, or affected files in the system. The system
provides end-to-end encryption, with the private keys required
to decrypt data retained on users’ devices. This allows servers to
be semi-trusted, with no access to unencrypted data or ability to
decrypt data.

Proxy re-encryption (PRE) schemes provide properties that are
well suited to building such a system. In the remainder of the pa-
per, we will first present background on proxy re-encryption, then
describe our orthogonal access control system. We then present
a previously developed PRE scheme that meets our requirements.
We describe modifications we have made to the algorithm that
improve performance by eliminating features we do not use. We
then present a multi-party computation technique for augmenting
the asymmetric key pairs to enhance the system’s ability to revoke
access to encrypted data.

2 BACKGROUND
The idea of proxy re-encryption was first introduced in 1998 by
Blaze, Bleumer, and Strauss, who provided a concrete scheme based

https://doi.org/10.1145/3201595.3201602
https://doi.org/10.1145/3201595.3201602

on El Gamal public key cryptography [2]. This PRE scheme had the
following properties:

(1) Each participant has a public-private key pair.
(2) A participant, the delegator, can delegate decryption of mes-

sages to a delegatee. The delegator generates a re-encryption
key that can be used to re-encrypt any messages encrypted
to her public key so that the delegatee can decrypt them
using her private key. This avoids the need for the delegator
to share her private key with the delegatee.

(3) The re-encryption keys are held by one or more semi-trusted
proxies that perform the re-encryption of messages. A re-
encryption key does not allow decryption of messages or
provide access to either party’s private key.

(4) Delegation is revoked when a proxy deletes the relevant
re-encryption key.

For example, if Alice plans to be unavailable for a period of time
and wants to delegate her messages to Bob, she uses her private key
and Bob’s public key to generate a re-encryption key, which she
stores with her proxy. Each message that is encrypted to Alice and
delivered to the proxy is re-encrypted to Bob and is delivered to
him. When Alice is again available and wants to revoke delegation,
she just removes the re-encryption key from the proxy.

In 2006, Ateniese et al. introduced the first unidirectional PRE
scheme [1]. The authors also enumerated a list of useful properties
of PRE protocols, including the following:

(1) Directionality, which describes whether delegation from A
to B also allows re-encryption from B to A. Unidirectional
schemes do not allow this.

(2) Interactivity, which describes whether both parties must be
actively involved in order to generate the re-encryption key.
A non-interactive scheme only requires the public key of the
delegatee.

(3) Transitivity, which describeswhether a proxy can re-delegate
decryption. That is, if the proxy holds a re-encryption key
from A to B and a re-encryption key from B to C, can it
generate a re-encryption key from A to C? A non-transitive
scheme does not allow this.

(4) Collusion safety, which describes whether it is possible for
a delegatee to collaborate with a proxy that holds a re-
encryption key to that delegatee to recover the secret key of
the delegator. A collusion-safe scheme does not allow this.

In 2007, Canetti and Hohenberger proposed a definition of se-
curity against chosen-ciphertext attacks (CCA-security) on PRE
schemes and introduced an algorithm that satisfied the definition
[4]. They also outlined several open problems in PRE construction,
including the construction of a unidirectional PRE scheme that was
also multi-hop (also called multi-use); that is, a scheme that allows
an encrypted message that has been re-encrypted from Alice to Bob
to subsequently be re-encrypted from Bob to Carol, if Bob has dele-
gated access to Carol. (The scheme they proposed was multi-hop,
but it was bidirectional.)

In 2009, Wang and Cao proposed a scheme that addressed this
problem – a CCA-secure unidirectional, multi-hop, collusion-safe,
non-interactive PRE algorithm [9]. The CCA-security of their scheme
was subsequently challenged by Zhang and Wang[13]. In 2014, Cai
and Liu expanded on the issue and introduced a second security

issue with the algorithm, then provided a modification that resolved
both problems [3]. They also included a proof of CCA-security for
the modified scheme.

This PRE scheme, like most others that have been proposed,
provides five distinct cryptographic primitives:

• KeyGen – client-side generation of public/private key pair.
This is the standard elliptic curve key generation algorithm.
• ReKeyGen – client-side generation of a re-encryption key
between a pair of entities.
• Encrypt – client-side encryption of a message to a recipient.
• ReEncrypt – proxy-side re-encryption of an encrypted mes-
sage.
• Decrypt – client-side decryption of an encrypted or re-encrypted
message.

2.1 Prior Research
Proxy re-encryption has been a field of active research since it was
first introduced by Blaze et al.

There has been a large volume of research on access control
in cloud computing environments, including the publication on
outsourcing computation without relinquishing control by Chow et
al. [5], the work on cloud-scale fine grain access control by Yu et al.
[12], and the work on end-to-end secure content sharing by Xiong
et al. [10]. Several different cryptographic approaches have been
proposed, including identity-based and attribute-based approaches
such as the hierarchical ABE scheme proposed by Wang et al. [8].

Proxy re-encryption has featured prominently in a significant
amount of research. Among the many works, Xu et al. describe
a certificateless PRE scheme [11], and Liu et al. propose a time-
limited delegation scheme based on PRE [6]. Qin et al. present
a comprehensive survey of works proposing PRE for use in data
sharing in the cloud [7].

2.2 Terminology
The term re-encryption is often used to describe the process of
decrypting a message then encrypting it with a new key. In a PRE
scheme, however, re-encryption refers to the transformation of an
encrypted message without decryption and without the ability to
learn about the message or the keys that could be used to decrypt
it. We find the word transformation to be more descriptive of the
process, so we will hereafter use that term instead of re-encryption.
For instance, we reference TransformKeyGen and Transform in the
following, rather than ReKeyGen and ReEncrypt.

3 ORTHOGONAL ACCESS CONTROL SYSTEM
We have built a system that can be used to add strong security and
cryptographically backed access control to an application. Specif-
ically, the system provides orthogonal access control capabilities.
The system manages users and allows individual users to encrypt
data and grant access to that data to other individuals, but it also
introduces groups that are collections of users. This allows a user to
choose one or more groups to whom to grant access to encrypted
data. Independently and asynchronously, group administrators
choose which users belong to the groups. Adding a member to
the group is simply accomplished in constant time, irrespective

of the size of the group or the amount of data the group can ac-
cess. Likewise, removing a member from a group is a constant time
operation that does not require modification of any encrypted data.

In addition to providing groups as collections of users, the user
represents a collection of devices. A user must utilize some com-
puting device to access and decrypt data, so the system allows
each user to control which devices are authorized to access their
encrypted data. A user can subsequently decide to revoke access
from a particular device (say a smart phone that was lost or stolen).

The individual user delegation capability that PRE schemes pro-
vide can be readily adapted to provide orthogonal access control. A
PRE scheme that is unidirectional, non-interactive, non-transitive,
and collusion safe is a solid foundation for an end-to-end encrypted
system where users do not need to trust the server to keep data
secure. A multi-hop scheme allows the system to provide delegation
from groups to users and from users to devices.

Figure 1: System architecture

Our system consists of a library that is embedded in an appli-
cation, along with a service that acts as the proxy and also as the
key server, storing public keys for groups and users and allowing
clients to retrieve them. To facilitate compatibility of this system
with a variety of applications and systems, the PRE library does
not handle user authentication. The application is responsible for
providing a signed assertion of the user’s identity; the system is
configured with the public key to validate the signature for the
app. Likewise, the system does not handle the storage of encrypted
application data; the application is free to store this data in a way
that is compatible with the rest of the application.

3.1 Cryptographic Protocols
Our cryptosystem provides the following cryptographic protocols
and operations, built on the primitives provided by PRE. The mem-
bership relationship (a user belonging to a group or a device be-
longing to a user) is represented by a PRE transform key.

Initialize User - adds a new user to the system. The client
invokes the underlying KeyGen to create an encryption key pair
for the user and the signing function G to generate a corresponding
signing key pair. The client provides amethod to encrypt the private
keys, so they can be escrowed securely. The client registers the
user’s ID, public key, and encrypted private keys on the proxy,
then invokes KeyGen and G again to create separate key pairs for
the current device. The client stores the device’s private key in
secure local storage on the device, then invokes TransformKeyGen
to create the transform key from the user to the device. The client
registers the device public keys and the transform key on the proxy.

Figure 2: Relationship of Groups and Users

Add Device - authorizes a new device to access the user’s data.
When the client accesses the system from a new device that does not
have device private encryption and signing keys, the client retrieves
the user’s escrowed private encryption key and decrypts it. The
client invokes KeyGen and G to create encryption and signing key
pairs for the current device. The client stores the private keys in
secure local storage on the device, then invokes TransformKeyGen
to create the transform key from the user to the device. The client
registers the user’s identity, device public keys, and the transform
key on the proxy, then discards the user’s private encryption key
as it is no longer needed. The device private keys are not escrowed
on the proxy; if they are lost, the user re-registers the device using
this process.

Remove Device - revokes authorization for a device to access
the user’s data. If a user decides to revoke access, she uses another
authorized device to perform the operation. This request is sent to
the proxy, causing it to remove the transform key from the user to
the specified device.

Figure 3: Transform Key from User to Device

Create Group - adds a new group to the system. The user
that creates the group is the initial administrator for the group.
The client invokes KeyGen to create a key pair for the group,
then invokes Encrypt, treating the group’s private key as the mes-
sage and encrypting it to the public key of the current user; this
makes the creating user an administrator. The client also invokes

TransformKeyGen to compute a transform key from the group to
the creating user; this makes the creating user the first member of
the group. The client registers the group ID, public key, user ID and
encrypted private key for the administrator, and transform key for
the group member with the proxy.

Add Member to Group. This must be invoked by a user that
is an administrator for the group, and it requires that the user to
be added as a group member must have already been added to the
system (implying that the user has a public key). The client first
retrieves the public key of the user to be added from the proxy. If
this is successful, the client requests the group private key from
the proxy. The proxy looks up the group, determines whether the
requesting user is an administrator, and if so, locates the trans-
form key from the requesting user to the requesting device. If this
key is found, the proxy invokes Transform to transform the en-
crypted private key from the user to the device and returns the
transformed encrypted key. The client uses the device’s private key
to invoke Decrypt to recover the group private key. Once the client
has the group’s private key and the user’s private key, it invokes
TransformKeyGen to generate a transform key, and it registers that
with the proxy.

RemoveMember fromGroup. This must be invoked by a user
that is an administrator for the group. The administrator requests
that the proxy remove a specific user from the group. The proxy
confirms that the requesting user is an administrator of the group
and if so, looks up the transform key from the group to the user to
be removed. If this is found, the proxy deletes the transform key.

The system also allows a group member to remove herself from
the group. The proxy confirms that the requesting user is a group
member, and if so, locates the transform key from the group to that
user and deletes it.

Figure 4: Transform Key from Group to User

Add Admin to Group. This must be invoked by a group admin-
istrator. It is similar to the protocol to add a member to the group;
the new admin must be a user in the system. The client retrieves
that user’s public key and the group’s private key. Once the client
has decrypted the group’s private key, it invokes Encrypt using the
new admin’s public key, and it associates the new admin’s user ID
and the new encrypted public key with the group and registers this
information with the proxy.

RemoveAdmin fromGroup. This must be invoked by a group
administrator. The operation is similar to removing a member from
the group; the client sends the group ID and the user ID of the
administrator to be removed to the proxy. The proxy confirms that
the requesting user is an admin for the specified group. If so, it
locates the encrypted private key for the group that is associated
with the admin to be deleted. If that entry is found, the proxy deletes
it.

Encrypt Document is invoked with a document and an associ-
ated unique identifier. The client first chooses a random document
encryption key (DEK) and invokes a symmetric key encryption prim-
itive to encrypt the document data. It then retrieves the current
user’s public key from the proxy and invokes Encrypt using that
key, with the DEK as the data to be encrypted. This produces an en-
crypted DEK (EDEK) that is associated with the user’s ID. The client
sends the document ID, the current user’s ID, and the EDEK to the
proxy for storage. The library returns the encrypted document to
the embedding application for storage.

Grant Access is invoked from a specific device on behalf of the
current user. It requires a document ID and a list of recipients that
are allowed to access the document, each of which can be a group or
an individual. The user that invokes this method must have initially
encrypted the document or been granted access previously. The
client first requests the EDEK for the document from the proxy.
The proxy searches for the shortest access path that is available
between the document and the user. This involves searching the
list of EDEKs for the document to find one that grants access to the
user. If there isn’t one, it looks for one that grants access to a group
that includes the user. If it finds an EDEK, it invokes Transform
on the entry to transform it to the user’s device key and returns it.
The client uses the device’s private key to decrypt the response and
retrieve the DEK. The client then retrieves the public key of each
recipient from the proxy and invokes Encrypt with the DEK and
each public key to generate a new list of EDEKs. The client sends
this list along with the document ID to the proxy for storage.

Decrypt Document is invoked from a specific device on behalf
of the current user. Similar to the sharing case, the client sends a
request for the EDEK to the proxy. The proxy searches for the EDEK
and if found, transforms it to the user’s device and returns it. The
client decrypts the EDEK using the device private key to retrieve
the DEK. If this is successful, the client invokes the symmetric
key decryption primitive, using the DEK to decrypt the encrypted
document that was provided by the embedding application.

Revoke Access is used to remove access to a specific document
from a user or group. The client passes the document ID, current
user ID, and the ID of the user or group whose access is being
revoked to the proxy. The proxy confirms that the requesting user
has access to the document, and if so, deletes the EDEK entry for
the specified user or group.

Update Document is invoked to update the contents of a previ-
ously encrypted document. The client first verifies that the current
user has access to the document by searching for a path from the
document to the user. If this exists, the client randomly chooses a
new DEK and uses it to symmetrically encrypt the new version of
the document. It then requests the list of EDEKs from the proxy. For
each EDEK, it retrieves the public key, and it invokes Encrypt with
the new DEK and the public key. It sends the document and the
replacement list of EDEKs to the proxy for storage, and it returns
the encrypted document to the embedding application for storage.

This method is provided to allow for revocation of access. If a
user was granted access to a document at some point in time, used
the system to decrypt the document, and captured the DEK from
the client, she could retain this DEK. At a future time, after her
access was revoked, if she could retrieve the encrypted data for an
updated version of the document, she could use the DEK directly to

decrypt it. By rotating the DEK each time the document is updated,
she is limited to only decrypting versions of the document to which
she was granted access.

4 PRE ALGORITHMS
Our system uses the PRE algorithms described by Cai and Liu,
with some simplifications. Our system has a single proxy which
performs all transformations for multiple hops at the same time.
Rather than computing an authentication code for each hop using
the relatively expensive pairing, as specified in the Wang algorithm,
our proxy signs the entire ciphertext or transformed ciphertext
with a simple message hash and a much faster Ed25519 signature,
using a separate signing key.

The following algorithms describe the primitives of the Cai
and Liu PRE scheme, with our signature changes. As a reminder,
we renamed ReKeyGen to TransformKeyGen and ReEncrypt to
Transform.

The five primitives are KeyGen, Encrypt, TransformKeyGen,
Transform, and Decrypt.

Let params = (k,p,G1,GT , e, g, g1, SHA256,H2, Siд) be public
parameters, where:
• k is the number of bits required to store keys;
• p is a prime;
• G1 and GT are abelian groups with G1 written additively
and GT written multiplicatively;1
• e : G1 × G1 → GT is a bilinear pairing;
• g is an arbitrary fixed nonzero element of G1.
• g1 is a random element of G1 which does not lie in the cyclic
subgroup generated by g.
• SHA256 : {0, 1}∗ → 256-bit hash and H2 : GT → G1 are
two one-way collision-resistant hash functions.
• Siд = (G,S,V) is the Ed25519 strongly unforgeable sig-
nature scheme, with a key generation algorithm, a signing
algorithm, and a verification algorithm.

KeyGen(params) → (pk, sk):
Generate a public/private key pair.
(1) secret key sk ←R Z

∗
p

(2) public key pk← sk · g

TransformKeyGen(params, ski , pkj , (spki , sski)) → tki→j :
Generate a transform key from user i (the delegator) to user j
(the delegatee). Requires the delegator’s private key (ski), the
delegatee’s public key (pkj), and the delegator’s signing key pair
(spki , sski). Produces a transform key that is a tuple of five values.
(1) transform key pair (tpk, tsk) ← KeyGen
(2) transform value K ←R GT Âă
(3) encrypted transform value eK ← K · e(pkj , g1)

tsk

(4) signature siд← S(tpk| |eK | |spki , sski)
(5) transform point tep← H2(K) + (−ski) · g1
(6) transform key tki→j ← (tpk, eK , spki , siд, tep)
Note that the signature does not include tep. In the transforma-

tion process, this value does not get copied into the transform block,
1Throughout, we will use bold to denote elements of G1 .

so omitting it from the signature allows the signature to be copied
into the transform block and verified if desired.

The transform key tki→j is sent to the proxy via a secure channel.

Encrypt(params,m, pkj , (spki , sski)) → Cj :
Encrypt a messagem ∈ GT to delegatee j, given j’s public key
(pkj) and the sender i’s signing key pair (spki , sski). Produces a
ciphertext Cj that is a tuple of five values.

(1) ephemeral key pair (epk, esk) ← KeyGen
(2) encrypted message em ←m · e(pkj , g1)

esk

(3) authentication hash ah ← SHA256(epk | |m)
(4) signature siд← S(epk| |em | |ah | |spki , sski)
(5) ciphertext Cj ← (epk, em,ah, spki , siд)

Transform(params,Ci , tki→z , (spk, ssk)) → Cj – or –
Transform(params,Ci , [tki→a , ..., tky→z], (spk, ssk)) → Cj
Transform a ciphertext encrypted to i (Ci) into a ciphertext en-
crypted to j (Cj), given a list of one or more transform keys (tk),
provided in the order in which they must be applied, and the
proxy’s signing key pair (spk, ssk). (This operation is performed
by the proxy rather than the client.)

First, validate the signature on the encrypted message and on
each of the transform keys:

(1) If any parse or verify step fails, return ⊥
(2) Parse Ci into (epk, em,ah, spkm , siдm)
(3) VerifyV(epk| |em | |ah | |pskm , siдm , spkm)
(4) Parse each tk into (tpk, eK , spktk , siдtk , tep)
(5) VerifyV(tpk| |eK | |spktk , siдtk , spktk)

Apply the first transform from the list:

(1) random key pair (rpk, rsk) ← KeyGen
(2) random transform value rK ←R GT
(3) random encrypted transform value

reK ← rK · e(pkj , g1)
r sk

(4) transformed encrypted message
em′ ← em · e(epk, tep + H2(rK))

(5) modified ciphertext C ′i ← (epk, em
′,ah)

(6) transform block TB ← (tpk, eK , rpk, reK)
(7) transformed ciphertext Cj ← (C

′
i ,TB)

If there are additional transform keys in tk , process each of them
in turn.

(1) Parse the last transform block of Cj into
(tpkprev , eKprev , rpkprev , reKprev)

(2) Parse the next transform key from the list, tk , into
(tpk, eK , spktk , siдtk , tep)

(3) random key pair, (rpk, rsk) ←R Z
∗
p

(4) random transform value, rK ←R GT
(5) random encrypted transform value

reK ← rK · e(pkj , g1)
r sk

(6) transformed encrypted transform value
eK ′ ← eKprev · e(tpkprev , tep + H2(rK))

(7) transformed random encrypted transform value
reK ′ ← reKprev · e(rpk, tep + H2(rK))

(8) Replace eKprev and reKprev in the last transform block with
eK ′ and reK ′

(9) transform block TB ← (tpk, eK , rpk, reK)
(10) Append TB to Cj .
In summary, on each transformation (after the first), the last

eK and reK values from the previous transformation are modified,
then the first two elements of the new transform key and the new
rpk and reK are appended. Note that the encrypted message em
from the original ciphertext Ci is only modified once, in the first
transformation. After that, it is not changed again.

After all transforms have been applied, the entire transformed
ciphertext is signed.

(1) signature siд← S(Cj | |spk, ssk)
(2) Cj ← (Cj , spk, siд)

Decrypt(params,Ci , ski) →m:
Decrypt a signed ciphertext (Ci) given the private key of the
recipient i (ski). Returns the original message that was encrypted,
m. As above, we return ⊥ if any parse or verify step fails.
First, validate the signature on the ciphertext:
(1) Extract spk and siд, the last two elements of SC
(2) Extract C , all of Ci preceding spk
(3) VerifyV(C | |spk, siд, spk)

To decrypt a first-level ciphertext, whereC includes no transform
blocks:

(1) Parse C into (epk, em,ah)
(2) m ← em · e(epk, (−ski) · g1)

To decrypt a transformed ciphertext, where C includes l trans-
form blocks:

(1) Parse C into (C ′,TB′(1), . . . ,TB′(l−1),TB(l))
(2) Parse C ′ into (epk, em′,ah)
(3) Parse TB(l) into (tpk(l), eK (l), rpk(l), reK (l))
(4) For each integer k in [1, l − 1], parse TB′(k) into
(tpk(k), eK ′(k), rpk(l), reK (l))

(5) K (l−1) ← eK (l) · e(tpk(l), (−ski) · g1)
(6) rK (l−1) ← reK (l) · e(rpk(l), (−ski) · g1)
(7) For each integer k from l − 2 down to 0

Kk ← eK (k+1) · e(tpk(k+1),−H2(K
(k+1)))

rKk ← reK (k+1) · e(rpk(k+1),−H2(rK
(k+1)) −

H2(K
(k+1)))

(8) m ← em′ · e(epk,−H2(K
0) − H2(rK

0))

Finally, verify SHA256(epk | |m) = ah

The random elements in each transform were introduced to
the original algorithms by Cai and Liu to resolve a problem they
called proxy bypass. Without those values, when a user decrypts
a transformed message, she recovers the transformation value K
from each of the transform keys that were applied to the message.
This means, for example, that if Alice transformed a message to Bob,
Bob transformed the message to Carol, and Carol transformed the
message to Eve, when Eve decrypted the message, she would have
the K values from all of the transform keys, and if she subsequently

intercepted a message that was transformed from Alice to Bob, she
could use the K from that transform key to decrypt the message.
The introduction of the random elements in the transformation
process does not prevent this, but the K values by themselves are
not sufficient to decrypt the transformed message.

5 ENHANCED REVOCATION
A significant benefit of the orthogonal access control system as
described is the ability to revoke access from group members with
minimal overhead and impact. It is not necessary to decrypt any
documents that were shared with the group, generate new keys,
and encrypt the documents again; removal of the transform key
between the group and the member effectively revokes access.

One potential weakness in this scheme is that a user who has
been made an administrator of a group has access to the private
key for the group. Even if that user’s group access is subsequently
revoked and she is removed as an administrator of the group, she
could retain a copy of the group private key to directly decrypt
any data encrypted to the group, without requiring a transform or
assistance from the proxy. Consequently, the group key pair would
need to rotate and all files encrypted to that group would need to be
decrypted and re-encrypted to the replacement key pair whenever
an administrator leaves. This has a negative impact on scalability.

We propose a solution that addresses this weakness and achieves
the following:

(1) A group private key should only be able to generate trans-
form keys; it should not be able to decrypt data.

(2) The transform keys generated with a group private key
should not be able to transform data outside of the proxy.

To achieve this, we use amulti-party computation to augment the
group’s public key and to perform a corresponding augmentation of
transform keys. The client creates a partial key, and the semi-trusted
proxy computes another part of the key and combines them. This
operation does not compromise the non-transitivity or collusion-
safety of the PRE scheme.

When a group is created, a key pair is generated for that group,
and the public key is sent to the proxy. On receipt of the public key,
the proxy executes the following algorithm:

AugmentPublicKey(params, pkc) → (skp , pkauд):

(1) proxy key pair (pkp , skp) ← KeyGen
(2) augmented public key pkauд ← pkc + pkp
where the addition of public keys is simply addition of two points

on the elliptic curve. The resulting augmented public key is stored
and distributed as the group’s public key, and all data encrypted to
the group is encrypted to this augmented key. The proxy retains
the group private key that it generated, skp , and keeps it secure.

Neither party in the computation (client or proxy) is able to
determine the other party’s secret key, even though each knows
its own secret key, the component public keys, and the resulting
augmented public key. Since pkauд = skc · g + skp · g, either party
can recover the other party’s public key by subtracting its own
public key from the augmented public key. But recovering the other
party’s secret key still requires solving the elliptic curve discrete
logarithm problem (ECDLP).

After augmentation, any data that is encrypted to the group’s
public key can no longer be decrypted by the group’s private key.
Decryption requires possession of both the client and the proxy
secret keys.

In order to allow decryption of a message on the user’s device
without sharing the proxy’s secret key, we also augment each trans-
form key that is created from the group to a user. The transform key
that is generated on the client transforms from an unaugmented
group public key to a user’s key, so we augment the transform key
using the same secret key the proxy generated for the group.

On adding a user to a group, when the proxy receives the trans-
form key from the client, it executes the following algorithm:

AugmentTransformKey(params, tkc , skp) → tkauд :
Augment a transform key from a group to a user (tkc), given the
proxy secret key that was used to augment the group’s public
key (skp).
(1) Parse tkc into (tpk, eK , spktk , siдtk , tep)
(2) VerifyV(tpk| |eK | |spktk , siдtk , spktk)
(3) augmented transform point tep′ ← tep + −skp · g1
(4) tkauд ← (tpk, ek, spktk , siдtk , tep′)

This augmentation of the transform key is performed before the
transform key is stored on the proxy. The augmentation process
does not give the proxy access to any additional information about
the group private key, so it does not allow the proxy to generate new
transform keys or decrypt files. But group administrators can only
generate partial transform keys, which cannot be used to transform
data to any user without cooperation by the proxy.

5.1 Users and Devices
We perform the same augmentation of user public keys and the
transform keys between user and device. In this way, someone who
captures the user’s private key on a device cannot use that key to
decrypt any data that was encrypted to the user. Device public keys
are not augmented; this allows the device private key to decrypt
data that is encrypted to the device public key without additional
information. However, the system never directly encrypts data to
a device; it only transforms data encrypted to a group or a user
to the device. Thus, revocation of device access, which deletes the
transform key from the device to the user, renders the device private
key useless to decrypt data.

When a device requests a document that was encrypted to the
user’s augmented public key, the factor of −skp in the augmented
transform encryption point cancels out the factor of skp in the
augmented public key, and the device is able to decrypt the message.
The appendix shows the cancellation in detail.

Figure 5: Message Transfer from Group to Device

If a device requests a document that was encrypted to a group,
the first transform converts the encrypted data from the group’s
augmented key to the user’s augmented key, cancelling out the

proxy’s key for the group. The second transform converts from the
user’s augmented key to the device’s public key, cancelling out the
proxy’s key for the user and producing a ciphertext that the device
can decrypt with its secret key.

6 CONCLUSIONS
We have presented a secure data sharing system that implements
cryptographically backed access control built on multi-hop, unidi-
rectional, non-interative, and collusion safe proxy re-encryption.
The system has the advantageous property of orthogonal access con-
trol whereby data can be encrypted to a group and, asynchronously
and without accessing the encrypted data, the administrator for
that group can determine which users are able to decrypt the data.
Similarly, a user can determine what devices can decrypt data that is
intended for the user. The encrypted data can be stored anywhere.

Revocation: Access to a group’s data by a user or to a user’s data
by a device is revoked by removing the corresponding transform key
from the proxy. It is not necessary to decrypt previously encrypted
data, choose a new key, and encrypt with the new key when access
is revoked, since the data was never encrypted directly to the device
that will retrieve the data.

Additionally, we have introduced a multi-party computation
to augment the group and user public keys in the system. This
augmentation enhances the revocation of access to data. Even if a
group administrator retains a group’s secret key after her access is
revoked, or if a device retains the user’s secret key after its access
is revoked, that secret key cannot be used to decrypt any of the
group’s or user’s data without access to a partner secret key that is
held by the proxy.

Semi-Trusted Proxy: Because we use end-to-end encryption
to enforce access control, the proxy that stores and distributes the
encrypted information never has access to the keys to decrypt the
data. Users do not need to trust the proxy to keep data secure. Users
do need to trust that when they revoke access, the proxy will delete
transform keys when instructed to do so. But the proxy can never,
by itself, decrypt data or grant access to data to a user.

PRE Choices: We show a specific PRE scheme that meets our
criteria and has been previously proven chosen ciphertext attack
(CCA) secure. We also propose changes to the signing portion of
the scheme for practical purposes that strengthen verifiability and
improve performance.

Implications: We believe that cryptographically backed secu-
rity, and specifically end-to-end encryption, are crucial components
of future cloud computing environments. Data is everywhere and
perimeters around cloud servers are imperfect. Further, it is impos-
sible to build software systems of reasonable complexity without
bugs, some of which can likely be exploited.

By keeping data encrypted through its lifecycle, and by pushing
keys off of the storage server and to the points of use, the impact
of a server compromise are drastically reduced. Even if a web ap-
plication is compromised, it is handling encrypted data that can
only be unlocked by an authorized user with the cooperation of
the proxy. End-to-end encryption that can handle large groups of
users at cloud scale is the future of cloud security.

The core library that implements the proxy re-encryption algo-
rithms we use for the system is available as free and open source
software - look on GitHub for the IronCoreLabs/recrypt repository.

REFERENCES
[1] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. 2006. Improved Proxy Re-

encryption Schemes with Applications to Secure Distributed Storage. ACM
Transactions on Information and System Security (TISSEC) 9, 1 (2006), 1–30.

[2] M. Blaze, G. Bleumer, and M. Strauss. 1998. Divertible protocols and atomic proxy
cryptography. In EUROCRYPT. Springer-Verlag, 127–144.

[3] Y. Cai and X. Liu. 2014. A Multi-use CCA-secure Proxy Re-encryption Scheme.
IEEE 12th International Conference on Dependable, Autonomic, and Secure Com-
puting 7 (2014).

[4] R. Canetti and S. Hohenberger. 2007. Chosen-ciphertext Secure Proxy Re-
encryption. In Proceedings of the 14th ACM Conference on Computer and Commu-
nications Security (CCS). ACM, New York, NY, USA, 185–194. https://doi.org/10.
1145/1315245.1315269

[5] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka, and J. Molina. 2009.
Controlling data in the cloud: outsourcing computation without outsourcing
control. In Proceedings of the ACM Workshop on Cloud Computing Security. ACM,
85–90.

[6] Q. Liu, G. Wang, and J. Wu. 2014. Time-based proxy re- encryption scheme for
secure data sharing in a cloud environment. In Information Sciences, Vol. 258.
Elsevier, 355–370.

[7] Z. Qin, H. Xiong, S. Wu, and J. Batamuliza. [n. d.]. A Survey of Proxy Re-
Encryption for Secure Data Sharing in Cloud Computing. In IEEE Transactions
on Services Computing, Vol. PP.

[8] G. Wang, Q. Liu, and J. Wu. 2010. Hierarchical attribute-based encryption for
fine-grained access control in cloud storage services. In Proceedings of the ACM
Conference on Computer and Communications Security. IEEE, 735–737.

[9] H. Wang and Z. Cao. 2009. A Fully Secure Unidirectional and Multi-use Proxy
Re-encryption Scheme. ACM CCS Poster Session (2009).

[10] H. Xiong, X. Zhang, D. Yao, and X. Wu. 2012. Towards End-to-End Secure
Content Storage and Delivery with Public Cloud. In Proceedings of the second
ACM conference on Data and Application Security and Privacy (CODASPY’12).
257–266.

[11] L. Xu, X. Wu, and X. Zhang. 2012. CL-PRE: A certificateless proxy re-encryption
scheme for secure data sharing with public cloud. In Proceedings of the 7th ACM
Symposium on Information, Computer and Communications Security. ACM, New
York, NY, USA, 87–88.

[12] S. Yu, C. Wang, K. Ren, and W. Lou. [n. d.]. Achieving secure, scalable, and
fine-grained data access control in cloud computing. In Proceedings of the IEEE
International Conference on Computer Communications.

[13] J. Zhang and X. A. Wang. 2013. On the Security of Two Multi-use CCA-secure
Proxy Re-encryption Schemes. Int. J. Intelligent Information and Database Systems
7, 5 (2013), 422–440.

7 APPENDIX
7.1 Correctness of PRE algorithms
These algorithms rely on the bilinear properties of the pairing
function. As a reminder, bilinearity requires that

∀a,b ∈ Fp ∗,∀P ∈ G1,∀Q ∈ G2 : e(aP ,bQ) = e(P ,Q)ab

∀R, S ∈ G1,T ∈ G2, e(R + S,T) = e(R,T) · e(S,T)

For the simple encryption case without transformation, we know
that in Encrypt,

pkj = skj · g

epk = esk · g

em =m · e(pkj , g1)
esk

and that in Decrypt,

m = em · e(epk, (−skj) · g1)

Rewriting the decrypt expression, we get

m =m · e(pkj , g1)
esk · e(epk, (−ski) · g1) =

m · e(skj · g, g1)esk · e(esk · g, (−skj) · g1) =

m · (esk · g, g1)skj · e(esk · g, g1)−skj =
m · 1 =

m

For a simple single-hop transformation from Alice to Bob, we
know that

eK = K · e(pkB , g1)
tsk

tep = H2(K) + (−skA) · g1

reK = rK · e(pkB , g1)
r sk

em′ = em · e(epk,H2(rK) + tep) =

m · e(pkA, g1)
esk · e(epk,H2(rK) + tep) =

m · e(pkA, g1)
esk · e(epk,H2(rK) + H2(K) + (−skA) · g1)

and in Decrypt,

K = eK · e(tpk, (−skB) · g1) =

K · e(pkB , g1)
tsk · e(tpk, (−skB) · g1) =

K · e(skB · g · tsk, g1) · e(tpk, (−skB) · g1) =

K · e(tpk, g1)skB · e(tpk, g1)−skB =
K

rK = reK · e(rpk, (−skB) · g1) =

rK · e(pkB , g1)
r sk · e(rpk, (−skB) · g1) =

rK · e(rpk, g1)skB · e(rpk, g1)−skB =
rK

m = em′ · e(epk,−H2(K) − H2(rK)) =

m · e(pkA, g1)
esk · e(epk,H2(rK) + H2(K)+

(−skA) · g1) · e(epk,−H2(K) − H2(rK)) =

m · e(epk, skA · g1) · e(epk,H2(rK) + H2(K)+

(−skA) · g1) · e(epk,−H2(K) − H2(rK)) =

m · e(epk, skA · g1 + H2(rK) + H2(K)+

(−skA) · g1) · e(epk,H2(K) + H2(rK))
−1 =

m · e(epk,H2(K) + H2(rK))·

e(epk,H2(K) + H2(rK))
−1 =

m

For a two-hop transformation from Alice to Bob, then from Bob
to Carol, the process is the same, with the modification of eK and
reK in the first transform block and the addition of the second
transform block. In Transform,

https://doi.org/10.1145/1315245.1315269
https://doi.org/10.1145/1315245.1315269

eKA→B = KA→B · e(pkB , g1)
tskA→B

reK (1) = rK (1) · e(pkB , g1)
r sk (1)

eK ′(1) = eK (1) · e(tpkA→B ,H2(rK
(2)) + tepB→C)

reK ′(1) = reK (1) · e(rpk(1),H2(rK
(2)) + tepB→C)

eKB→C = KB→C · e(pkC , g1)
tskB→C

reK (2) = rK (2) · e(pkc , g1)
r sk (2)

em′ = em · e(epk,H2(rK) + tep) =

m · e(pkA, g1)
esk · e(epk,H2(rK) + tep) =

m · e(pkA, g1)
esk · e(epk,H2(rK) + H2(K)+

(−skA) · g1)

In Decrypt,

dK (1) = eKB→C · e(tpk(2), (−skC) · g1) =

KB→C · e(pkC , g1)
tskB→C · e(tpk(2), (−skC) · g1) =

KB→C · e(tpkB→C , g1)
skC · e(tpkB→C , g1)

−skC =

KB→C

drK (1) = reK (2) · e(rpk(2), (−skC) · g1) =

rK (2) · e(pkC , g1)
r sk (2) · e(rpk(2), (−skC) · g1) =

rK (2) · e(rpk(2), g1)skC · e(rpk(2), g1)−skC =

rK (2)

dK (0) = eK (1) · e(tpk(1), (−skB) · g1) =

KA→B · e(pkB , g1)
tskA→B · e(tpk(1), (−skB) · g1) =

KA→B · e(tpkA→B , g1)
skB · e(tpkA→B , g1)

−skB =

KA→B

drK (0) = reK (1) · e(rpk(1), (−skB) · g1) =

rK (1) · e(pkB , g1)
r sk (1) · e(rpk(1), (−skB) · g1) =

rK (1) · e(rpk(1), g1)skB · e(rpk(1), g1)−skB =

rK (1)

m = em′ · e(epk,−H2(dK
(0)) − H2(drK

(0))) =

m · e(pkA, g1)
esk · e(epk,H2(rK

(1))+

H2(KA→B) + (−skA) · g1)·

e(epk,−H2(dK
(0)) − H2(drK

(0))) =

m · e(epk, g1)skA · e(epk,H2(rK
(1)) + H2(K)+

(−skA) · g1) · e(epk,−H2(KA→B) − H2(rK
(1))) =

m

7.2 Correctness with key augmentation
Suppose Alice generates a user key pair (pkA, skA), a device key pair
(pk1, sk1), and a transform key tkA→1), and that the proxy generates
the augmentation key pair (ppkA,pskA). Alice’s augmented public

key is
pkAauд ← pkA + ppkA

The augmented transform key’s transform encryption point is

tepauд ← tep − pskA · g1

When a documentm is encrypted to Alice’s augmented public
key,

em =m · e(pkAauд , g1)
esk =

m · e(pkA + ppkA, g1)
esk

If this is transformed to device 1,

em′ = em · e(epk, tepauд) =

em · e(epk, tep − pskA · g1) =

m · e(pkA + ppkA, g1)
esk · e(epk, tep − pskA · g1) =

m · e(pkA, g1)
esk · e(ppkA, g1)

esk ·

e(epk, tep) · e(epk, g1)−pskA =

m · e(pkA, g1)
esk · e(epk, tep)·

e(pk, g1)pskA · e(epk, g1)−pskA =

m · e(epk, g1)skA · e(epk, tep)

In Decrypt,

m = em′ · e(epk,−H2(K)) =

m · e(epk, g1)skA · e(epk, tep) · e(epk,−H2(K)) =

m · e(epk, g1)skA · e(epk,H2(K) + (−skA) · g1)·

e(epk,−H2(K)) =

m · e(epk, g1)skA · e(epk, g1)−skA ·

e(epk,H2(K)) · e(epk,H2(K))
−1 =

m

The cancellations for transforms from a group’s augmented pub-
lic key to a user’s augmented public key to a device’s public key
are similar.

	Abstract
	1 Introduction
	2 Background
	2.1 Prior Research
	2.2 Terminology

	3 Orthogonal Access Control System
	3.1 Cryptographic Protocols

	4 PRE Algorithms
	5 Enhanced Revocation
	5.1 Users and Devices

	6 Conclusions
	References
	7 Appendix
	7.1 Correctness of PRE algorithms
	7.2 Correctness with key augmentation

